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1. INTRODUCTION

There is a naturally conjectured inequality for sums of random

variables that seems hard to prove. Consider Y 1l <1 <n, indepen-

i’

dent and identically distributed positive random variables. Let

81Y1+82Y2+--~+6 Y
with ei positive constants. The conjecture is this: among all ways
of varying Gi that preserve the mean (so 81+~--+en stays fixed),
the tails of W are smallest when all ei are equal.

It is not hard to show that the variance of W (or the expected
value of any convex function) is smallest when all ei are equal. It
often seems as if much more is true.

For symmetric distributions a fairly general result is known.

Let f be the common density of Y .,Yn. Define & = (& ceesd ).

1 2’ n
Proschan (1965) showed that if f is symmetric (about zero) and logf

l,-.

is concave, then P[W > t] is Schur~convex in 8§ for t > O.

For positive random variables (having asymmetric distributions)
very little is known. We have chosen to work mainly with the gamma
distribution. Our results are summarized in the following.

By a-1

Let Y, havea Gamma(a,B) density f(v) = e g%/T(a) on

(0,»). For n=2 we show ——

P(W < t] is Schur-convex in § if

t:a(t«1+92)/8, and ! ‘
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2
P[W > t] is Schur-convex in 8 if
,:' 1
t > (a+3)(6,+6,)/8.
- 2771 72
N
A
§
f Specializing to a standard exponential with a=8=1, both tails are
"‘
smallest when €1=72. Here the left tail starts any place left of
3
5
3 the mean (= ﬁ1+62), and the right tail starts any place to the right
X of the mean times 3/2. No simple convexity holds between these two
values. 1
For general n > 2, our results go in the same direction although
they are cruder. For a sum of n Gamma(a,B) wvariables
) |
>
4 P{W < t] is Schur-convex for ¢ in the
%
4
" region {8: min &, > tB/(na+l)}, and
l<i<n
1
d P{W > t] is Schur-convex in * for
4
! S A e R
Y t z_(na+l)(~1+_2+ +9n)/b .
L]
5 Our results cover positive linear combinations of chi-square variables.
» These arise in the asymptotic distributions of nonparametric goodness of
[
. fit tests. See Chernoff and Lehmann (1954) and Moore (1978) and Alvo,
3 Cabilio and Fiegen (1982) (for the average Kendall tau statistic). The
l
' results of this paper apply because a linear combination of the form
2 2
L]
. clxn + CoX, may be written as
P
X n+m
]
N 0.Y,
N i=1
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where 6i = 2c1 for i=1l,...,n and ei = 2c2 for 1i=n+l,...,ntm,

and the independent gamma variables Yi each have shape parameter

1
a=+ and 8 = 1,

2

Positive linear combinations of chi-square variables also arise when
positive linear combinations of sample variances from normal populations
are formed.

Linear combinations of chi-square variables can also occur as

limiting distributions of U-statistics. For example, let h(x,y) be

a symmetric function with associated U-statistic

L
() i

U =
n

zj h(X;,X,)

where the Xi are independent identically distributed random variables
with distribution function F. Assume E(hz(Xl,Xz)) is positive and
finite. Define hl(x) to be E(h(x,Xl)) and 51 to be the variance
of h (X,). Let ® = Eh(X;,X,). If & 1is zero, then n(U -6)
converges in distritubion to a constant plus a linear combination of
independent chi-square random variables with one degree of freedom.
Details and examples can be found in Gregory (1977) or Serfling (1980)
Section 5.5.2.

Our results may be applied to study linear combinations of exponen-
tial variables. These arise, for example, as waiting time distributions
in pure birth processes (see Feller (1971), page 41).

We also give results for the Weibull distribution when n=2: Let

the Yi's have a Weibull (8,y) density

1 B
£(v) =y 8yt le™Y Lig,e)®) -
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We show that P[W < t0] is Schur-concave in 8 if
1
@ty 2 (60,46,) (1 + 2/ when 8> 1
or
L b
— R <
(b) ty 2 (el+82)((1 + 28)/Y) £ when 0 < B < 1 .

Our results show that the tail of the linear combination W is
minimized when all the coefficients ei are equal. This is analogous
to results for binomial random variables in the master's thesis of
Chebychev and in the work of Hoeffding (1956) and Gleser (1975) which
are described in Section K of Chapter 12 of Marshall and Olkin (1979).
(Our results resemble Gleser's but the inequalities go in the opposite
direction.) We believe similar results hold much more generally, e.g.,
for all naturally occurring exponential families. We have been unable

to provide a general theory.

It is possible to consider the question of Schur-convexitv or
concavity in other metrics for the ei's and it should be noted that
Tong (1980) has shown for gamma random variables that P(W < t) is
strictly Schur-concave in (8;1,...,8;1) for all positive t and
n > 2,

In Section 2 of this paper we treat the case of a positive linear

combination of two independent identically distributed gamma random

variables. In Section 3 we look at this case for a Weibull distribution.
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In Section 4 we examine the distribution function of a positive linear
combination of n independent identically distributed gamma random

variables.

2. POSITIVE LINEAR COMBINATIONS OF TWO GAMMA VARIABLES

In this section we set n=2. Without loss of generality we assume
51+92 1 and assume the scale factor 8 1is one in the Gamma (a,B)
distribution. Then with p=¢ we have

1

W= le-+(l-p)Y2

where 0 < p < 1 and the Yi are independent random variables each with

density

£x) = * Y e¥r )

for x > 0, where . {is positive.

In the case n=2 the Schur-convexity or Schur-concavity in
of the distribution function of W is determined bv examining the
sign of the following derivative

3
3p P(pY, + (1-p)Y, < t) ,

where % <p <1,

We show for all p there exists a value to(p) such that the

derivative is positive for t less than to(p) and negative for t

. L T S
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PRI IO S CRE G O " ".C'.‘}_'.r:'l.‘.-_ .r:'l:'.r:'.f. :‘ e }.ﬁdf.n SRS ':'l)t} o0



I
]

greater than to(p). Also to(p) lies between a and a +-%.
)
Thus P(W < t) 1is Schur-concave in 5 for t <a+ % and Schur- ‘ -
ke
convex for t < a, Furthermore P(W < t) is neither Schur-concave -
nor Schur-convex in 8 for o < t<a+ %. This result was observed o
empirically by Solomon (1961) in distribution function tables for the bt
P
'd
case of a = % (when the gamma variable is a multiple of a chi-square -
variable with one degree of freedom). The result was shown analytically :;
by Diaconis in unpublished results for a = 1 (when the gamma variable £
is an exponential random variable). See Marshall and Olkin (1979), jl
Chapter 12, Theorem K.3. $~
Notation: For the rest of this section Yl,Y2 are independent .
-1 -X% -
gamma random variables with demsity x> 1e /T(2) and p will alwavs -
o1
satisfy 5 <pc 1. W
Furthermore, we will often write X
-
w3
Fp(t) = P[le-F(l—p)\2 < t] -
N
Lemma 1: The sign of :f
=ena - N}
s
b

2 P[pY. + (1-p)Y, < ¢t -

ap ‘P L
-

?.,;r” 1{

is the same as the sign of Sp(t) defined by

1
- -1 )
S_(t) = ( (p-x)x" l(l-x)] e tgx .
P lo r

~
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where A = _ZE:l_. In fact,
p(1-p)
3
3 P[PY1+ (l-P)YZ:t] = Ksp(c)
2 o+l -t/ (1-p)
t e
where K = {—(f:—y] —_— .
piip (tT(a))
Proof:
t t-py
p a-1 -y ((1-p) a-1 -u
F (t) = I € _ u_¢e dudy
p T (a) T (a)
JO 0
implies
t _(t-p_v)
-1 1-
3 F (t) = P (t-y) }'O e (t-py(; e P dv
T -
3p p 0 (1-p)2 T'(a) 1-p T(a)
Making the change of variable x = Eﬁv yvields
- - (koExy
ZF () =% {1 (t-tx/p) (55)1'1 e P (:-cx)°°l e 1-p dx
T (- _ -
3p P >y (l—p)2 p T (x) 1-p " (a)
t
a+1 -
2 (1-p) (1 _
= i( (i_ )] = z 0 (x(1-) 17 e X g
\PRAP (tT(a)) lo
where
X 1 1 2p-1
A= - =+ = D
\ p (1-p) p(i-p) QE




Remark: The next lemma shows that for %-< p <1, the function
=X p - . . :

e ptSp&t) is strictly decreasing in t and thus can have at most one
change of sign. From the definition of Sp(t) it is clear that

Sp(O) 0 and thut Sp(t) < 0 for all sufficientlv large t. Thus

there exists co(pJ 0 such that

e
i

Fp(t) >0 for t < to(p) and

Fp(t) <0 for t > to(p)

D

Y
lemma 2: For % <p <1, the function e "ptSp(t) is strictly
decreasing in t,
Proof:
. 1 . ~ .
Pt () = ( (p—x)xd l(l—x)l 1e t(x p)dX
P JO
sco that
. _pt (L 2 a-1 11t (x-p)
— le S (t)] = -=% i (p-x)"x (1-x) e dx
at p /
‘0
which is negative. QFD

The next lemmas 3, 4, and 5 are used in the proof of Theorem 1

which states that to(p) is less than (a + %)-
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Lemma 3: gL Fp(t) has the same sign as

where

P

1 -t/h(s)
J = [(I-ZS)sa-l(l—s)u_l]ds

0 (h(s))2**?
h(s) = ps+ (1-p)(1-s).
Proof:

(f xa—le-x a-1l -y
L A dxdy ,
J

T(a) T (a)

where integration is over the values such that x > 0, y > 0 and

px + (

Subst

1-p)y < t.
ituting r = x+y and s = x/(x+y) this becomes

1 t/h(s)
F (t) = T(aL)-2 { s l(l—s)a 1ds rza_le Tdr
p J 0 ‘0
so that
. 212 -1 -t/h(s) ] _
SL-F (t) = ¢ 5 ; & 7271 [(1—25)5J l(l—s)l l]ds . QED
PP T(x) 70 (h(s))
Lemma 4: Define
log (L) - log(H)
X v
f(x,y) = —~—
1 1
G-
Xy
for x #v and f(x,x)=x. Then f(x,v) 1is strictly Schur-concave.
e R e T e e NN N e s AT




Proof: Note that

2.2
_; _3_ v _ X+y (X +y '
('3\ - :'x)f(‘\’)) = y—x k(v-x)z_i lOg(Y/X) .
So for «x v  we must show that
2 2
%‘ ) 5_1\'_2)' log(y/x}
Y (2 S
or equivalently
vz-xz
< log(y/x)
2, 2
x ty

or equivaiently (substituting u = y/x)

D

< log u for u > 1 .
u +1

Beth sides are equal when u=1 so it suffices to differentiate

toth sides and shnow that

——:ﬁg—§-< 1 for u > 1
(U‘+1) u
This is immediate. OED
Lemma 5: ¥for x > 0 define g(x) = % + log x.

(a) If 0 <y <z and v+z <2, then g(v) > g(z).

(b)Y 1f g(v+z) > g(y-z), then g(y+u) > g(v-u) for 0 < u < z,




- < 5 < Al dad hg ko gt N ~ W W W, " RGNS AR AL SR R € A M R e MR R e o e -

= 11
N
RS,
: Proof:
& rroot
) (a) For y < z, g(v) > g(z) 1is equivalent to f(y,z) < 1 where

3
'g f 1is the function from the previous lemma. By Schur-concavity

N

N

z+z +2

y £(y,2) < £(5 ,Lz ) = (y+z)/2

J
L4

X

> so that g(y) > g(z) when (v+z)/2 < 1.

. (b) For r < s, g(r) < g(s) 1if and only if f£(r,s) > 1.

; Similarly g(r) < g(s) 1if and only if f(r,s) > 1. Thus

U4

v g(y+z) > g(yv-z) implies f(y-z, y+z) > 1. Now Schur-concavity yields
™ f(y-u,y+u) > f(y-z,v+z) > 1 for O < u < z, Thus g(y+u) > g(y-u)
: as desired. QED
\

B Theorem 1: (See Remark preceding lemma 2).
.~ 1
.: For p > o

>
L ¢

X

" 1

, to(P) < o+ 73
hat is, = F (t) <0 f >4+ &
» that is, 30 p t or t > a >
N

? Proof: We use the result of lemma 3. The function

v a=1 a-1 | 1

(1-2s)s (1-s) is odd about the value s = 7" Thus, to show that
¢
g% Fp(t)<<0, it suffices to show that

>

Cd
e

’ o-t/h(s) ) o-t/h(1-s)

20+ 20+

‘W YO NN CTe R P

L

o

>
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for 0 < s < % By taking logs and doing some algebra, this is seen
to be equivalent to )

.l
..l
h(s) c [h(l—s)\,
+ + ——=
E Ry * Lo g{ } T Wes) el
N
:';: where c¢ = foTt:l" Now use lemma 5(a). Since the function h(s)
< = ps+ (1-p)(1-s) 1is increasing for o > —;—, the previous inequality
will hold if
&
-
h(s) , h(l-s) 9
c c -
3:: But h(s) + h(l-s) = 1 for all s, so this is equivalent to ¢ 3_%_
x
- or t > a + é— QED
_:-'_ The following theorem gives a useful bound on to(p) for small o
-2 or for small .
1 1
Theorem 2: For p > 5 we have to(p) > (a +-2-) +(p) where
1.~
log (_l-l-p) - log (E)
vip) = 2 1 1
L 1p " p J
. , 1
by We have Y(p) <1 for p > 2 and liri\ ¥(p) = 1. A small table is
" Pt
given below,
T TN LT T T e T T g (a




For a = %, p = .80, the tables of Solomon (1960) give to(p) & .79 and

the bound is .7394,

Proof: We repeat the argument of the earlier theorem (proving

to(p) <a + %—) but with the inequalities reversed.

To show a—ap- Fp(t) >0, it suffices to show

c . 108[11(5)) < c + log[h(l-s))

h(s) c h(1l-s) c

for 0 < s < % where ¢ = %:-:_;I. Observe that the function h(s) is

increasing and h(s) + h(l-s) = 1. Thus lemma 5 part (b) says that

(*) will be true if

< € h(l)
hEY + log(—-——c ]

Using h(0) = 1-p, h(l) = p and a little algebra this becomes

1 1
1 [, _1 —
og(l_P og () ,

1 1
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The following lemma will be needed in the proof of Theorem 3,

Lemma 6:
& a-1 a-1 At
L Dex(1-x) + aQ-2x) 1% (1-x)7 7 e dx = 0 .
‘0
Proof:
3; ix}(l—x)a] = at(l—Zx)xm_l(l—x)m_1
so that integraticn by parts gives
1 a o Atx 1 a-1 a-1, Atx
[x"(1-x)"][ te jdx = - [a(1-2x)x (1-x) Je" Tdx .
-0 0

Moving both integrals to the same side of the equation and then combining

them into one integral completes the proof. QED

Theorem 3: For t < a and %,< p <1,

3

TS F (t)

Proof: we have earlier used the fact (Lemma 1) that g% F (t) has

the same sign as

1
Sp(t) = J (p-x)x 1(1- )0l -1 )txdx

where ) = ;%%5%7. Therefore it suffices to show that Sp(t) > 0
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for t < a. This can be achieved by noting that Sp(t) has the same
sign as eQSp(:) where ¢ 1is any smooth function depending on p
and t. Now Sp(O) is positive and if e®Sp(t) is increasing in t
for t < a, then Sp(t) must be positive for t < a. So it suffices
to show that for some smooth function ¢ we have g% (e¢Sp(t)) >0
for t < a,

For anv function ¢ we have

1

ait (e*s (1)) = J (p-x) Gix+k)x® L (1-x) 21 X4k
P 0

with k = %3-. By the preceding lemma we may replace (p-x)(Ax+k)

~

in the above integral by

(* (p~x) (x+k) + c[itx(1-x) + a(1-2x)]

without changing the value of the integral. Here ¢ 1is any quantity whose
value does not depend on x but may depend on t and p. By appropriate
choice of ¢ and k, the expression (*) can be made into a constant,

that is, an expression not involving x. Choosing ¢ = -1/t eliminates

the quadratic (xz) term. Next we choose k = (2a/t) - A(l-p) to

eliminate the linear term. With these choices the constant term becomes

pk+ca = (2p-1)(3-1) >0 for t <a. Thus EQE (e“’sp(c)) >0 for

t <a where ¢ is determined by %%—= (2a/t) - A (1-p). QED

-------------



e s B s

et

16

3. POSITIVE LINEAR COMBINATIONS OF TWO WEIBULL VARIABLES

In this section it is shown that a positive linear combination
(?1Y1+%2Y2) of two independent identically distributed Weibull random
variables Y, has a distribution function which is Schur-concave in ¢
for sufficiently large argument. Without loss of generality we set

%l+ﬁ2 = 1 and we set the scale factor of the Weibull distribution to

one. Then P(- ¥, +%,Y, < t) is Schur-concave in { if
1
(a) t - Q1 +~%? )B when 8 > 1
cr
1 1-8
(B t > (1 + %ﬁ 5 .8 when 0 < B8 <1,

Again the Schur-concavity will follow if the derivative with respect
to p of the distribution function P[le-l-(l—p)Y2 < t} 1is negative in
an apprcnriate region., Theorem &4 developes conditions under which the
derivative is negative and Corollary 1 interprets them to provide the
result ahove.

Notation: Define

Fp(t) = PlpY, + (1-p)¥, < t]

Theorem 4: Let Y.,Y, be independent Weibull random variables with

1772
g-1

density given by B8x exp(—xs). If -& <p <1l and

cp v’ T P L P T e L T O e P O T S T T S e W SO S S . ..
oy 'cq.\' \' ¢ ""~f~ » 8 "'\"\ .-‘b. ~{. :‘.nf atle \ . ‘- . ) . C. (.",‘- <~y '!'.q" '-
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B 1
t > (1+ 5§)M ,

then 3p

F (t) < 0. Her
p( ) ere

ol

lPB + (l-p)B for

for B

|v
—

™
| A
—

Under the assumptions of Theorem 4, we have

Corollary 1:

)
== F () < 0 if
p p
1
1.8
(@ t> 1+ Eg) when B > 1
1 1-8
3]
® t>@+5° 2% when 0<pc1.
Proof: Part (a) follows immediately from the theorem. It is

necessary to find an upper bound for pB

for part (b). Because for % <p <1,
By

(p® + (1-p)

is a decreasing function of p, the maximum occurs for p = %3 i.e.

L8, )8 o Bl ,1-8
(P + P =P 2
1l 1-8
8 1..,1-8 1.8 g
Thus t~ > (1 + 28)2 , 1.e. t > (1+ 28 2 QED

.................
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+ (1-p)8 independent of p
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The following lemma is used in the proof of Theorem 4.

Lemma 7: For independent Weibull variables Yi with density given

in Theorem 4, we have

B
exp [—t ¢(S)]
h(s)

28+1 ds

1
(t) = 2?8 J (1-28)sP 1 (1-5)871

2
EL 0 h(s)

L

where ¢(s) = 55 + (l-s)8 and h(s) = ps + (1-p)(1-s).

Proof of Lemma: Change from Cartesian coordinates to r,s, defined

by r = xty, s = ;%;. Then
(1 (t/h(s)
Fp(t) = i [rf(rs)f(r(l-s))]ldrds
0°0

and

3 2

1
= F (t) = [ (1-2s) —&
°%p P ‘o h(s)

st (1-s)t
YO LRALIO)

))ds

where h(s) = ps + (1-p)(1-s) and f is the Weibull densitv. QED

Proof of Theorem 4: Use Lerma 7 and let g denote the expression

in brackets inside the integral for g% Fp(t). The function

(1-25)58_]‘(1-3)8—1 is odd about the value s = %. Therefore, to prove
é% Fp(t) < 0, it suffices to show that g(s) < g(l-s) for 0 < s < %.

Taking logs this becomes
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8 8
t Q(S; + (28+ 1) log h(s) > t—¢—(l:§-l + (2B+ l) log h(l"S)
\ h(s) h(1-s)

or equivalently

cd(s)
h(s)B

h()®) | co(1-5)

h(l- s) )
co(s) h(l—s)s

+ log (c¢(l )

+ log (

B8
t . : :
' where c¢ = E———. To obtain this last expression we have used the

28+1
fact that ¢(s) = ¢(l-s). By Lemma 5(a) (concerning the function

%-+ log x) we need only show

h(s)? _ h(1-9)°

(1) cop(s) ct(l-s) ’ and
g g

.. h(s) h(l-s)~ _

G 5y ¥ colosy < 2

for 0 < s < Note that (i) is true because h is strictly increasing

[N

when p > % and (ii) will be true if

Maximum h(s)e hs h(l's) ]

1t s + (1- s)
0<s<3 3

< 2c .

In the lemma which follows, this maximum is shown to equal 1 for 8 > 1

and to equal p8 + (l-p)B for B8 <1, Now use c = T8+1 and the proof

is complete. QED

Lemma 8: Define

h(s) + h(l-s)

Vv(s) = g
s + (l-s)




s

Then
(1 for 5 >1,
Maxinum v(g) = 1
0cs- L 1pb + (1-pf for 2 <1.
Proof: Remember that u(s) = ps + (1-p)(l-s) and % <p < 1.
Consider first £ - 1. A stationary point must satisfy
3

s log +(s) = 0 which is equivalent to

~
I

- 22p-D () - na-9®h s - -e)®?

h(s)" + h(i-s)® 2+ (1-9)F

)

8

But for 0 < s < it is easy to verify that h(s)B + h(l—s)8> s+ (l-s)8

- £ -
and h(s)6 1. h(l-s)” L s8 1

t o

- (1-3)8_1. Since 0 < 2p-, ~ 1, the
left hand sidec of {*) is strictlv less than the right hand side. Thus

v has no stationary point in the open interval (0,%) and J must

achieve its maximum at O or -%.
b0 =0+ -8 s 1=y

Now consider g2 > 1,

g% (h(s)® + h(1-8)®] = g(1-25)[h(1-8)"1 - n(s)B711 > 0

for 0<s f_%. Therefore 333 wp(s) >0 for 0 <s i%- The subscript

on y 1indicates the value of p. Since Wp(s) increases with p we

, 1=y (&
have wp(s) < ¥(s) =1-= Wp(z) as desired. QED o
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4, POSITIVE LINEAR COMBINATION OF N GAMMA VARIABLES s

We show that the distribution function of a positive linear com-

bination of n independent gamma random variables is Schur-concave in

the coefficients when the argument of the distribution function is
sufficiently large. This implies that the right tail probabilities
are Schur-convex. The "sufficiently large" bound for the argument
appears to be too large when compared with the precise results of
Section 2 for n = 2 and can probably be improved. Corollary 2 shows

that for independent Yi each with density xa-le—x/F(a) and positive

ei, i=1l,...,n, P( éiYi < t) is Schur-concave in 8 for
i

1

ne~-13

n
t > (na + 1) Z ei. For n =2 and 61 = p and 62 = 1-p where
i=1
: 0 <p <1 this lower bound for t is (2a+l) which is too large by

a factor of 2 according to the results of Section 2.

Theorem 5: Let Yl’YZ""’Yn be i.i.d. gamma random variables
with density x> Ye™®/T(a) and 8 = (8156500228 ) where & >0

for all i. Define

n
P (&) =P[ ] oY <t].
t 4o 11
As a function of 6, Pt(e) is symmetric and convex (and therefore Schur-
convex) inside the region {8:t < (no+1)Min 61}; Pt(e) is symmetric and

concave (and therefore Schur-concave) inside the region {9:t.i(n&+l)Max 91.
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¢ n
N Corollary 2: Pt(e) is Schur-concave in & for t > (nat+l) ) 61.
- i=1
n n '
< Proof: Because max @, < ) f., we have that t > (na+l) R
N —_— i— .= i - = i
3 i=1 i=1
implies that t » (na+l)max ?i. Theorem 5 implies that Pt(e) is
w n
symmetric and concave for € inside the region <{(Z:t > (na+l) ) Gi}. F
> i=1
‘: Thus Pt(i) is Schur-concave there. QED
J]
)
In what follows, t 1is held fixed at some arbitrary positive F
.. value. The basic tool in the proof of Theorem 5 is the following
f. result due essentially to Marhshall and Proschan (1965). (See Chapter
11, page 288 of Marshall and Olkin (1979).) h
\i Proposition: If Xl’XZ""’Xn are exchangeable and g is a
. n
- continuous convex function, then w(al,az,...,an) = Eg(iilaixi) is
. svmmetric and convex., It is also true upon replacing convex by concave.
.‘ n
% Proof of Theorem 5: For all i define S. = Y./( ' Y. ). The
% i i -, k
- k=1
n
vector (Sl,S,,...,Sq) is exchangeable and independent of I Yi'
: < r i=1 {
~ These are standard properties.
N
. n
- Define F(u) = P( E Y, < hl
i=1 * )
.: i
. ™ na-l -x ‘
. | X e “dx/T(na). ‘
“ -0 1
!
& Then 1
A b
: ‘
L
‘ 1
] [
A R
. 1
L
0 q
' 1
q
¥
o

1

\ 1
1
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v .
EP[(LeiSi)(EYi) < tl[uisi]

EF(t/Eeisi) = Eg(Xeisi)

where g(u) = F(t/u). A short calculation shows that

na -t/u
[(nat1) - &) £—=2

()

fl

g" (u) na+2
u

. t
Thus g 1is convex for u > and concave for 0 < u < For

— na+l — na+l

 in the region {=:t < (na+l)Min Gi},

Y =,8. > t
“ i1 — natl

Thus Eg(i%isi) is symmetric and convex by the proposition. Similarlv,

for = in ‘°:t > (na+l)Max ;i}’

~1
a

.S, <
ii — no+l

and therefore Eg(i%isi) is symmetric and concave. QED
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